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線形モデルの理論とRを用いた分析事例
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自己紹介

名前 馬場真哉

学生の頃の専門 水産学

前職 システムエンジニア

現職 フリーランス
東京科学大学非常勤講師
北海道大学非常勤講師
帝京大学特任講師
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本も書いています
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セミナーのテーマ

(後半)切片と傾きが時間に応じて変化する回帰モデル

線形ガウス状態空間モデルの初歩を学び
簡単な分析ができるようになる

(前半)線形回帰モデルから一般化線形モデルへ

ロジスティック回帰モデルの特徴を学び
分析結果を理解できるようになる

単純なモデルを発展させる
分析モデルの特徴を理解し、実装する



回帰分析の初歩
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内容

1．回帰分析とは？ 回帰モデルとは？

2．回帰モデルと正規分布
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回帰分析の目的

回帰分析の目的

2つ以上の変数の関係性を、定量的に表す式を求める
→回帰モデル

 変数が2つの場合は「単回帰モデル」と呼ばれる

ビールの売り上げ = 22.79 + 気温 × 0.69

単回帰モデルによって得られた数式の例
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線形回帰モデル

ビールの売り上げと気温の散布図



10

線形回帰モデル

売り上げ = 22.79 + 気温 × 0.69の直線を追加
（回帰直線と呼ぶ）
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線形回帰モデル

売り上げ = 22.79 + 気温 × 0.69の直線を追加
（回帰直線と呼ぶ）

「直線」でデータの特徴
 を表現できている

「直線」と「データ」には
 若干のずれがある
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回帰分析の目的

ビールの売り上げ = 22.79 + 気温 × 0.69 + 誤差

単回帰モデルによって得られた数式の例

誤差を入れるのを忘れない
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回帰分析のメリット

解釈 売上と気温の関係性が分かる
→気温が上がると、売り上げも上がる

予測 気温をもとにして、売り上げを予測できる
→気温が10度の時の売り上げを予測する

 売り上げ = 22.79 + 10 × 0.69 ≈ 30
 およそ、30万円の売り上げになると予測

現象を数式で表現し、
現象の解釈や予測に役立たせる
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線形回帰モデル
回帰分析によって得られた数式の例

ビールの売り上げ = 22.79 + 気温 × 0.69 + 誤差

切片 傾き
気温の係数

応答変数
（興味の対象）

説明変数
（興味の対象を変化させる）

𝑌𝑖 = 𝛽0 + 𝑥𝑖 ∙ 𝛽1 + 𝜀𝑖

切片𝛽0、傾き𝛽1、
応答変数𝑌𝑖、説明変数𝑥𝑖、誤差𝜀𝑖一般的な記号
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内容

1．回帰分析とは？ 回帰モデルとは？

2．回帰モデルと正規分布
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線形回帰モデル

回帰分析によって得られた数式の例

ビールの売り上げ = 22.79 + 気温 × 0.69 + 誤差

平均が0である
正規分布に従うと仮定

正規分布を使ってモデルを作る

𝑌𝑖 𝑥𝑖

①

※ 独立などの条件を満たせば、正規分布以外の分布の誤差でも、
最小二乗法を用いたパラメータ推定には支障ない
→これから説明する一般化線形モデルを理解するために、

今回の講義では最初から正規分布を仮定する
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線形回帰モデル

回帰分析によって得られた数式の例

𝑌𝑖 = 22.79 + 𝑥𝑖 × 0.69 + 平均0、分散𝜎2の正規分布に従う誤差①

𝑌𝑖~Normal 22.79 + 𝑥𝑖 ∙ 0.69, 𝜎2②

誤差が正規分布に従う
→ 𝑌も正規分布に従う(正規分布の特徴)
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線形回帰モデル

回帰分析によって得られた数式の例

𝑌𝑖 = 22.79 + 𝑥𝑖 × 0.69 + 平均0、分散𝜎2の正規分布に従う誤差①

𝑌𝑖~Normal 22.79 + 𝑥𝑖 ∙ 0.69, 𝜎2②

𝜇𝑖 = 22.79 + 𝑥𝑖 ∙ 0.69
𝑌𝑖~Normal 𝜇𝑖 , 𝜎2③

正規分布の期待値や分散を見やすくする
→式を2行に分けた。意味は全く同じ
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線形回帰モデル

売り上げの分布は、平均が「22.79 + 10 × 0.69」の正規分布
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線形回帰モデル

売り上げの分布は、平均が「22.79 + 25 × 0.69」の正規分布
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回帰モデルのイメージをデータを変えて確認

気温が「０，１０，２０，３０」の４種類のみ存在。
売り上げを応答変数として、回帰直線を描いた
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気温別に、売り上げデータのヒストグラムを描く
→正規分布の釣り鐘型の分布になる



統計モデルと確率分布 再考
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モデルとは

モデルの例

飛行機のモデル（模型）を考える

ぼくの考えた「さいきょう」の
飛行機だよ！！

(馬場が描きました)

プロペラが無いので飛ばない

モデル

現象を単純化した「模型」のこと
プラモデルのモデル
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モデルとは

モデルの使い道

モデルを使えば、
実際に行動する前に、結果について議論できる

何億円ものお金をかけて本物を作る前に、
空気抵抗や推進力などいろいろなことを検討できる

データに基づいてモデルを作ることで、
将来の予測等ができるかもしれない



モデルの利用

モデルと現実の対応に要注意

モデルの飛行機には、エンジンもプロペラもあって
ちゃんと飛ぶことがわかりました
モデルの飛行機には、エンジンもプロペラもあって
ちゃんと飛ぶことがわかりました

でもなんか、本物の飛行機は飛ばんのだがでもなんか、本物の飛行機は飛ばんのだが

本物の飛行機には、エンジンついてないからね～本物の飛行機には、エンジンついてないからね～

ダメじゃんダメじゃん



モデルの利用

モデルと現実の対応に要注意

回帰分析の結果、こういう感じになったよ！回帰分析の結果、こういう感じになったよ！

データは線形回帰モデルが適合しそうなの？データは線形回帰モデルが適合しそうなの？

全然違います全然違います

その分析結果を本当に使うの……？その分析結果を本当に使うの……？
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統計学におけるモデル

統計学におけるモデル

観測したデータを生み出す確率的な過程を
簡潔に記述したもの。

Graham Upton, Ian Cook．(白幡慎吾 監訳)．(2010)．統計学辞典．共立出版

モデル

模型。現実世界の模型を作る

「データを生み出す確率的な過程」や
「データが得られる過程」に着目



統計学におけるモデル

今回の事例

湖からの標本抽出
→5尾の魚だけがいる湖から1尾抽出する

5cm4cm3cm2cm1cm

とても小さな湖から無作為に1尾を取得
このモデル(データが得られる過程)は？



統計学におけるモデル

このモデルはちょっと単純すぎ？
もう少し現実味のあるモデルにしたい

体長 確率

1㎝ 0.2

2㎝ 0.2

3㎝ 0.2

4㎝ 0.2

5㎝ 0.2

5cm4cm3cm2cm1cm

どの体長も、0.2の
確率で得られる

確率分布

確率変数(この場合の体長)と確率の対応関係のこと
今回は右上の数表が確率分布となる
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正規分布を利用したモデル

正規分布の特徴

平均値(期待値)に近い値が出やすい
平均値に対して左右対称の確率分布

体長 確率

1㎝ 0.1

2㎝ 0.2

3㎝ 0.4

4㎝ 0.2

5㎝ 0.1

正規分布を使う方がよさそうな気がする？
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正規分布を利用したモデル

ビールの売り上げは正規分布に従うか？

平均的な売り上げになりやすく、
上振れ・下振れは同等の確率で発生するとみなせそう？
→このように想定できるなら、正規分布がよさそう

どんなデータでも正規分布を使えるか？

0か1しかとらないデータは、正規分布を使えない気がする
整数の値しかとらないデータも、正規分布は不適合

正規分布以外の確率分布を使う方が
現実にあうモデルになる可能性がある



ロジスティック回帰の初歩
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一般化線形モデルの基本

線形回帰モデル

𝜇𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Normal 𝜇𝑖 , 𝜎2

正規分布しか扱えない

正規分布しか使えない線形回帰モデルから
様々な分布が使える一般化線形モデルへ

一般化線形モデル(Generalized Linear Models :GLM)

正規分布以外の分布を扱うことができる
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一般化線形モデルの基本

一般化線形モデルの構造(イメージ)

𝑔 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~何らかの分布 𝜃𝑖

線形の構造(線形予測子)でパラメータが変化
リンク関数𝑔()を使い、モデルの表現力を上げる(後述)

正規分布以外の様々な分布に対応
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一般化線形モデルの基本

正規線形モデル(線形回帰モデル)

リンク関数が恒等関数であり、
正規分布を確率分布として用いる一般化線形モデル

恒等関数

𝑓 𝑥 = 𝑥となる関数のこと

線形回帰モデル(復習)

𝜇𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Normal 𝜇𝑖 , 𝜎2
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一般化線形モデルの基本

ロジスティック回帰モデル

一般化線形モデルにはいろいろな種類がある
・ポアソン回帰モデル
・ガンマ回帰モデル
→用いる確率分布によって名前が変わる

今回は「ロジスティック回帰モデル」に焦点を当てる
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内容

1．二項分布を使ったモデル化

2．ロジスティック関数・ロジット関数

3．ロジスティック回帰の構造
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二項分布

Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃𝑥 ∙ 1 − 𝜃 𝑛−𝑥

二項分布の確率質量関数

確率変数𝑋は0以上𝑛以下の整数を取りうる

パラメータは𝑛, 𝜃の2つ
𝑛：試行回数
𝜃：成功確率
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二項分布

表が出る確率が𝜃であるコインを𝑛回投げた時、
𝑋回の表が出る確率

Bin 𝑋 𝑛, 𝜃 = 𝑛C𝑥 ∙ 𝜃𝑥 ∙ 1 − 𝜃 𝑛−𝑥

二項分布が適合しそうな例

𝐸 𝑋 = 𝑛𝜃

期待値

𝑉 𝑋 = 𝑛𝜃 1 − 𝜃

分散
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ロジスティック回帰

線形回帰モデルとロジスティック回帰モデルの比較

モデルの構造は似ているが違いもある

確率分布の違い

線形回帰 ：正規分布
ロジスティック回帰：二項分布
→これが大事。ここが変わると連鎖的に色々変わる

変化するパラメータの違い

線形回帰 ：期待値𝜇が変化する
ロジスティック回帰：成功確率𝜃が変化する
→確率分布が違うので、パラメータも変わる
→期待値は「試行回数𝑛」×「成功確率𝜃」なので注意
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ロジスティック回帰

𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖 + 正規分布に従う誤差

誤差が加わる構造ではないので注意！

①

𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖 + 二項分布に従う誤差・・・？②

これは間違い！

線形回帰モデルの場合

ロジスティック回帰モデルの場合
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ロジスティック回帰

𝑌𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖 + 正規分布に従う誤差

③の構造で確率分布を変更するイメージ！
ロジスティック回帰は成功確率𝜃が変化する

①

𝜇𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Normal 𝜇𝑖 , 𝜎2③

確率分布のパラメータが変わる！

線形回帰モデルの場合
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ロジスティック回帰

データの例

10人ずつの班を用意しテストを受験、 𝑌人が合格
班ごとに勉強時間𝑥を変化
→試行回数𝑛は10回（1つの班に10人いる）
→成功確率𝜃は、勉強時間によって変化する

データが得られる確率的な過程(仮)

𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 10, 𝜃𝑖  

NormalをBinに変更した。実は、まだ修正が必要



ロジスティック回帰モデル

二項分布に従うデータに対して、線形構造を指定する問題点

𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

合格率がマイナス？！合格率がマイナス？！

𝜃𝑖が0未満や1以上の値をとることがありうる
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内容

1．二項分布を使ったモデル化

2．ロジスティック関数・ロジット関数

3．ロジスティック回帰の構造
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ロジスティック回帰モデル

ロジスティック関数

logistic 𝑥 =
1

1 + EXP −𝑥

0から1の範囲しかとらない0から1の範囲しかとらない
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ロジスティック回帰モデル

ロジスティック関数は、なぜ0以上1以下しかとらないか

logistic 𝑥 =
1

1 + EXP −𝑥

以下は指数関数と呼ぶ。 𝑒はネイピア数（2.7くらいの値）

𝑒𝑥

以下のように表記することもある（意味は同じ）

EXP 𝑥

𝑥 = 0なら、指数関数の結果は1になる

𝑒0 = EXP 0 = 1
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ロジスティック回帰モデル

指数関数のグラフ①

𝑒𝑥 = EXP 𝑥

Xが増えると、
急激にYが増える
Xが増えると、
急激にYが増える

Xがどれだけ減っても、
Yは必ず0以上
Xがどれだけ減っても、
Yは必ず0以上
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ロジスティック回帰モデル

指数関数のグラフ②

𝑒−𝑥 = EXP −𝑥

Xが減ると、
急激にYが増える
Xが減ると、
急激にYが増える

Xがどれだけ増えても、
Yは必ず0以上
Xがどれだけ増えても、
Yは必ず0以上
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ロジスティック回帰モデル

ロジスティック関数

logistic 𝑥 =
1

1 + EXP −𝑥

𝑥が減ると、
急激にEXP −𝑥 が増える
→分母の値が増える
→ロジスティック関数の結果は
0に近づく

𝑥が減ると、
急激にEXP −𝑥 が増える
→分母の値が増える
→ロジスティック関数の結果は
0に近づく

𝑥が増えると、
急激にEXP −𝑥 が0に近づく
→分母の値が「1」に近づく
→ロジスティック関数の結果は1に近づく

𝑥が増えると、
急激にEXP −𝑥 が0に近づく
→分母の値が「1」に近づく
→ロジスティック関数の結果は1に近づく
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ロジスティック回帰モデル

ロジット関数

logit 𝑥 = log
𝑥

1 − 𝑥

ロジット関数はロジスティック関数の逆関数

logit logistic 𝑥 = 𝑥
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内容

1．二項分布を使ったモデル化

2．ロジスティック関数・ロジット関数

3．ロジスティック回帰の構造
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ロジスティック回帰モデル

データが得られる確率的な過程(修正版)

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  
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ロジスティック回帰モデル

データが得られる確率的な過程(修正版)

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  

1つ目の式の左右両辺にロジスティック関数を適用

𝜃𝑖 = logistic 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  

リンク関数として
ロジット関数を使う
リンク関数として
ロジット関数を使う

線形予測子にロジスティック関数を
適用したと解釈できる
線形予測子にロジスティック関数を
適用したと解釈できる
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ロジスティック回帰モデル

データが得られる確率的な過程(修正版)

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 10, 𝜃𝑖  

予測値が
負の値にならない
予測値が
負の値にならない

𝜃𝑖 = logistic 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 10, 𝜃𝑖  
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まとめ

ロジスティック回帰モデル

リンク関数がロジット関数であり、
二項分布を確率分布として用いる一般化線形モデル

「ある」「ない」などの二値分類や
「〇個中、×個が成功」といったデータに対して適用する

𝜃𝑖 =
1

1 + EXP − 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖

モデルの構造は、
ロジスティック関数を使って覚えるとわかりやすい

logistic 𝑥 =
1

1 + EXP −𝑥
logistic 𝑥 =

1

1 + EXP −𝑥

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  
𝜃𝑖 = logistic 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  



尤度と最尤法
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切片と傾きの計算方法

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  
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内容

1．尤度と最尤法の基本

2．対数と対数尤度

3．ロジスティック回帰の尤度
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尤度と最尤法

尤度

パラメータを指定したときに
手持ちのデータが得られる確率を計算することによって得る

尤度関数

標本𝑦は固定。パラメータ𝜃を入力すると尤度を出力する関数
𝑓 𝑦 𝜃 と表記される

（尤度関数の合計値や積分値は1にならないので注意）
（尤度関数は確率質量関数や確率密度関数とはみなせない）
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尤度と最尤法

例）コインを10枚投げた。そのうちの2枚が表だった

𝜃＝コインを投げて表が出る確率パラメータ：

𝑓 𝑦 𝜃 = Bin 2|10, 𝜃尤度関数：

表2枚データ：

= 10C2 ∙ 𝜃2 ∙ 1 − 𝜃 10−2

𝑓 𝑦 0.1 = 10C2 ∙ 0.12 ∙ 1 − 0.1 10−2 ≈ 0.19

𝑓 𝑦 0.2 = 10C2 ∙ 0.22 ∙ 1 − 0.2 10−2 ≈ 0.30

𝑓 𝑦 0.3 = 10C2 ∙ 0.32 ∙ 1 − 0.3 10−2 ≈ 0.23
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尤度と最尤法

例）コインを10枚投げる作業を2回行った。
1回目：2枚表 2回目：4枚表

𝜃＝コインを投げて表が出る確率パラメータ：

表2枚・表4枚データ：

= 10C2 ∙ 𝜃2 ∙ 1 − 𝜃 10−2

 × 10C4 ∙ 𝜃4 ∙ 1 − 𝜃 10−4

𝑓 𝑦 𝜃 = Bin 2|10, 𝜃
× Bin 4|10, 𝜃

尤度関数：
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尤度と最尤法

例）コインを10枚投げる作業を2回行った。
1回目：2枚表 2回目：4枚表

𝜃＝コインを投げて表が出る確率パラメータ：

𝑓 𝑦 𝜃 = 10C2 ∙ 𝜃2 ∙ 1 − 𝜃 10−2

 × 10C4 ∙ 𝜃4 ∙ 1 − 𝜃 10−4

尤度関数：

表2枚・表4枚データ：

𝑦1 = 2, 𝑦2 = 4データ：

𝑓 𝑦 𝜃 = ෑ

𝑖=1

2

10C𝑦𝑖
∙ 𝜃𝑦𝑖 ∙ 1 − 𝜃 10−𝑦𝑖尤度関数：

式の書き換え式の書き換え
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尤度と最尤法

対数尤度

尤度の対数をとったもの。計算が楽になる(後述)

最尤法

（対数）尤度を最大にするパラメータを選ぶという、
パラメータ推定の原理のこと



𝜃＝コインを投げて表が出る確率パラメータ：

𝑓 𝑦 𝜃 = 10C2 ∙ 𝜃2 ∙ 1 − 𝜃 10−2尤度関数：

表2枚データ：
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尤度と最尤法

例）コインを10枚投げた。そのうちの2枚が表だった

𝑓 𝑦 0.1 = 10C2 ∙ 0.12 ∙ 1 − 0.1 10−2 ≈ 0.19

𝑓 𝑦 0.2 = 10C2 ∙ 0.22 ∙ 1 − 0.2 10−2 ≈ 0.30

𝑓 𝑦 0.3 = 10C2 ∙ 0.32 ∙ 1 − 0.3 10−2 ≈ 0.23

尤度が最も大きくなる
パラメータを採用

最尤法
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内容

1．尤度と最尤法の基本

2．対数と対数尤度

3．ロジスティック回帰の尤度



67

対数と対数尤度

対数と対数尤度

尤度が最大になるパラメータを採用するのが最尤法

尤度の代わりに、尤度の対数をとった「対数尤度」を使う
→なぜわざわざ対数をとるのか？
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対数と対数尤度

対数

指数の計算の逆だと思えばOK

指数

21 = 2

22 = 4

23 = 8

log2 2 = 1

log2 4 = 2

log2 8 = 3

対数
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対数と対数尤度

対数

指数の計算の逆だと思えばOK

指数

21 = 2

22 = 4

23 = 8

log2 2 = 1

log2 4 = 2

log2 8 = 3

対数

log2 8の「 2 」の部分を対数の底（テイ）と呼ぶ
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対数と対数尤度

対数の特徴

掛け算を足し算に変えることができる

2 × 4 = 8

素朴な掛け算

log2 2 = 1

log2 4 = 2

log2 8 = 3

log2 2 × 4 = log2 8

両辺に対数をとる

log2 2 + log2 4 = log2 8

対数の中の掛け算は、対数の外の足し算になる
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対数と対数尤度

対数の特徴

掛け算を足し算に変えることができる

2 × 4 = 8

素朴な掛け算

log2 2 = 1

log2 4 = 2

log2 8 = 3

log2 2 × 4 = log2 8

両辺に対数をとる

log2 2 + log2 4 = log2 8

対数の中の掛け算は、対数の外の足し算になる
1 2 3
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対数と対数尤度

自然対数

EXP（ネイピア数の指数関数）の逆は、対数の底を略する
これを自然対数と呼ぶ

log 𝑒 = 1

log 𝑒2 = 2

log 𝑒3 = 3

自然対数

対数の底は何でもよいが、
自然対数を使うことが多い
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尤度と最尤法

例）コインを10枚投げる作業を2回行った。
1回目：2枚表 2回目：4枚表

𝜃＝コインを投げて表が出る確率パラメータ：

𝑓 𝑦 𝜃 = 10C2 ∙ 𝜃2 ∙ 1 − 𝜃 10−2

 × 10C4 ∙ 𝜃4 ∙ 1 − 𝜃 10−4

尤度関数：

表2枚・表4枚データ：

log 𝑓 𝑦 𝜃 =

log 10C2 ∙ 𝜃2 ∙ 1 − 𝜃 10−2 + log 10C4 ∙ 𝜃4 ∙ 1 − 𝜃 10−4

対数尤度関数：
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尤度と最尤法

例）コインを10枚投げる作業を2回行った。
1回目：2枚表 2回目：4枚表

𝑦1 = 2, 𝑦2 = 4データ：

𝑓 𝑦 𝜃 = ෑ

𝑖=1

2

10C𝑦𝑖
∙ 𝜃𝑦𝑖 ∙ 1 − 𝜃 10−𝑦𝑖尤度関数：

log 𝑓 𝑦 𝜃 = ෍

𝑖=1

2

log 10C𝑦𝑖
∙ 𝜃𝑦𝑖 ∙ 1 − 𝜃 10−𝑦𝑖

対数尤度関数：

対数を使うと掛け算しなくて済む！
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内容

1．尤度と最尤法の基本

2．対数と対数尤度

3．ロジスティック回帰の尤度
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尤度と最尤法

尤度の計算の際、成功確率が変わる
表が出る確率が違うコインを使うイメージ

二項分布の単純なモデル

𝑌~Bin 𝑛, 𝜃

𝑛も𝜃も一定

ロジスティック回帰モデル

𝜃が𝑥𝑖の影響を受ける

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  

ロジスティック回帰モデルの場合

ロジスティック回帰モデルでは、成功確率が変わる
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ロジスティック回帰

データの例

10人ずつの班を用意しテストを受験、 𝑌人が合格
班ごとに勉強時間𝑥を変化
→試行回数𝑛は10回（1つの班に10人いる）
→成功確率𝜃は、勉強時間によって変化する

対数尤度の計算の対象となるデータの例

モデル(logistic表記)
𝜃𝑖 = logistic 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  

データ
𝑦1 = 2, 𝑦2 = 4 𝑥1 = 5, 𝑥2 = 10
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尤度と最尤法

尤度の計算例

𝛽0切片、 𝛽1傾き（勉強時間の係数）パラメータ：

𝑓 𝑦 𝜃 = Bin 2|10, logistic 𝛽0 + 𝛽1 ∙ 5

× Bin 4|10, logistic 𝛽0 + 𝛽1 ∙ 10

尤度関数：

(10人中)2人・4人合格 / 勉強時間は5時間・10時間データ：
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尤度と最尤法

尤度の計算例

𝛽0切片、 𝛽1傾き（勉強時間の係数）パラメータ：

𝑓 𝑦 𝜃 = Bin 2|10, logistic 𝛽0 + 𝛽1 ∙ 5

× Bin 4|10, logistic 𝛽0 + 𝛽1 ∙ 10

尤度関数：

(10人中)2人・4人合格 / 勉強時間は5時間・10時間データ：

= 10C2 ∙ logistic 𝛽0 + 𝛽1 ∙ 5 2 ∙ 1 − logistic 𝛽0 + 𝛽1 ∙ 5
10−2

× 10C4 ∙ logistic 𝛽0 + 𝛽1 ∙ 10 4 ∙ 1 − logistic 𝛽0 + 𝛽1 ∙ 10
10−4

成功確率が
説明変数に応じて変化



ロジスティック回帰の係数の解釈
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ロジスティック回帰モデル

データが得られる確率的な過程(修正版)

logit 𝜃𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 10, 𝜃𝑖  

ロジスティック関数を適用

𝜃𝑖 = logistic 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝜃𝑖  

ロジスティック関数が適用
→係数𝛽0, 𝛽1の解釈に注意
ロジスティック関数が適用
→係数𝛽0, 𝛽1の解釈に注意
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ロジスティック回帰モデル

ロジスティック関数を適用すると何が変わるか

直線の関係性だと、係数の解釈は簡単

X

Y

切片
X＝０の時のY

傾き
Xが1増えたときのY
の増加量
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ロジスティック回帰モデル

ロジスティック回帰

logit 𝑝𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 𝑛, 𝑝𝑖  

傾き？ 切片？傾き？ 切片？
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内容

1．切片𝛽0の解釈

2．傾き𝛽1の解釈
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ロジスティック回帰モデル

オッズ

オッズ =
𝑝

1 − 𝑝

オッズは「成功確率÷失敗確率」より
「失敗するよりも何倍成功しやすいか」を表すもの

𝑝は成功確率

対数オッズ

オッズの対数 対数オッズ = log
𝑝

1 − 𝑝
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ロジスティック回帰モデル

ロジスティック回帰モデルの解釈

logit 𝑝𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 10, 𝑝𝑖  
𝛽0は、 𝑥が0の時の
対数オッズである
𝛽0は、 𝑥が0の時の
対数オッズである
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ロジスティック回帰モデル

具体例

logit 𝑝0 = 𝛽0 + 𝛽1 ∙ 0

𝑥が0の時の対数オッズ

ロジット関数(参考)

logit 𝑝 = log
𝑝

1 − 𝑝

log
𝑝0

1 − 𝑝0
= 𝛽0

ロジット関数は
対数オッズの定義と同じ！
ロジット関数は
対数オッズの定義と同じ！



88

内容

1．切片𝛽0の解釈

2．傾き𝛽1の解釈
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ロジスティック回帰モデル

オッズ比

オッズの変化率

対数オッズ比

オッズ比の対数をとったもの

オッズ比 =
𝑝2のオッズ

𝑝1のオッズ
=

ൗ
𝑝2

1 − 𝑝2

ൗ
𝑝1

1 − 𝑝1
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ロジスティック回帰モデル

ロジスティック回帰モデルの解釈

logit 𝑝𝑖 = 𝛽0 + 𝛽1 ∙ 𝑥𝑖

𝑌𝑖~Bin 10, 𝑝𝑖  

𝛽1は、 𝑥が1単位増えた時の
対数オッズ比である
𝛽1は、 𝑥が1単位増えた時の
対数オッズ比である
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ロジスティック回帰モデル

具体例

logit 𝑝2 = 𝛽0 + 𝛽1 ∙ 2

𝑥が2から3に増えたとする

logit 𝑝3 = 𝛽0 + 𝛽1 ∙ 3

𝑝2 =
1

1 + EXP − 𝛽0 + 𝛽1 ∙ 2

𝑝3 =
1

1 + EXP − 𝛽0 + 𝛽1 ∙ 3

ロジスティック関数(参考)

logistic 𝑥 =
1

1 + EXP −𝑥

両辺にロジスティック関数を適用

logit logistic 𝑥 = 𝑥であることに注意
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ロジスティック回帰モデル

具体例

オッズ 𝑝2 =
𝑝2

1 − 𝑝2
=

1

1 + EXP − 𝛽0 + 𝛽1 ∙ 2

1 −
1

1 + EXP − 𝛽0 + 𝛽1 ∙ 2

オッズ(参考)

オッズ =
𝑝

1 − 𝑝
𝑝2 =

1

1 + EXP − 𝛽0 + 𝛽1 ∙ 2

𝑝2のオッズをとる

= EXP 𝛽0 + 𝛽1 ∙ 2
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ロジスティック回帰モデル

具体例

オッズ 𝑝3

オッズ 𝑝2

= EXP 𝛽1

オッズ 𝑝2 = EXP 𝛽0 + 𝛽1 ∙ 2

オッズ比をとる

オッズ 𝑝3 = EXP 𝛽0 + 𝛽1 ∙ 3

対数をとる

対数オッズ比 = 𝛽1
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Rを用いた実演
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