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切片と傾きが時間に応じて変化する回帰モデル



線形回帰モデルの注意点

2

時系列データに対して回帰分析を行う際
どのようなことに注意が必要だろうか
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時系列データ

● 30分ごとの電力需要

● 1秒ごとにとられた株価

● 毎月の売り上げデータ

時系列データ

● 東京都の毎日の気温の推移

時点ごとに得られた測定値を、時間の順に並べたデータ
「データの並び順」に意味があるのが特徴

時系列データは、状態空間モデルを使うことで、
柔軟にモデル化できる
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線形回帰モデル

回帰分析によって得られた数式の例

ビールの売り上げ = 22.79 +気温 × 0.69 +誤差

平均が0である
正規分布に従うと仮定

誤差は、互いに独立な正規分布を想定

𝑌𝑖 𝑥𝑖
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独立

独立性のイメージ

1つ目の確率変数を𝑋1と、2つ目の確率変数を𝑋2とする
条件𝑋1があってもなくても、
𝑋2の確率分布が変わらないなら𝑋1, 𝑋2は独立

例えば……
1つ目のデータの残差が大きかった（𝑋1が大きい）か、
残差が小さかった（𝑋1が小さい）かは、
2つ目のデータの残差の大きさ𝑋2に影響を与えない
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自己相関

時点同士の関連性を探る指標
「1時点前」と「今の時点」での相関をとるイメージ
(厳密な計算は微妙に異なるが省略)
正の自己相関と負の自己相関がある

自己相関とは

正

負

● 昨日の売り上げが多ければ今日も多い

● 昨日の売り上げが少なければ今日も少ない

● 昨日の売り上げが多ければ今日は少ない

● 昨日の売り上げが少なければ今日は多い

自己相関があるなら、
 独立とは言えない



自己相関

1973年1月から1978年12月までの
アメリカの交通事故死傷者数の時系列データ

P. J. Brockwell and R. A. Davis (1991) 
Time Series: Theory and Methods. Springer, 
New York.



自己相関

横軸が「先月」 縦軸が「今月」の死傷者数のグラフ
→先月に死傷者数が多ければ今月も多い正の自己相関



自己相関

横軸が「6か月前」 縦軸が「今月」の死傷者数のグラフ
→半年前に死傷者数が多ければ今月は少ない負の自己相関
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回帰分析の注意点

大きな残差が出たら、次も大きな残差が出やすい
小さな残差が出たら、次も小さな残差が出やすい

残差の自己相関のイメージ

残差に正の自己相関があると
回帰分析の結果は、どうなるだろうか
残差に正の自己相関があると
回帰分析の結果は、どうなるだろうか
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回帰分析の注意点

儲け同士に相関は無い

当たり始めたら、ずっと当たる
外れ始めたら、ずっと外れる

どちらのほうがデータ（お客の儲け）のばらつきが大きいか

自己相関のイメージ：パチンコの例
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回帰分析の注意点

どちらのほうがデータ（お客の儲け）のばらつきが大きいか

自己相関のイメージ：パチンコの例

儲け同士に相関は無い

当たり始めたら、ずっと当たる
外れ始めたら、ずっと外れる

儲かった人とそうでない人の差が激しい
→ばらつきが大きい！
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回帰分析の注意点

残差同士に正の自己相関がある場合、
想定しているよりも残差のばらつきが大きくなる！
→統計的仮説検定の結果などにも影響が出るので注意

残差が互いに独立ではない場合



ランダムウォーク過程の初歩
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ホワイトノイズ

平均 ：ゼロ
分散 ：一定
自己相関 ：ゼロ

平均0分散𝜎2の正規分布に従うノイズを
仮定することが多い（正規ホワイトノイズ）

ホワイトノイズの特徴

ホワイトノイズ

予測できない純粋な「ノイズ」のこと
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ホワイトノイズとランダムウォーク

iid（独立で同一な確率分布）

ホワイトノイズ（自己相関無し）よりも、
より厳しい条件である。

正規ホワイトノイズ

正規分布に従うホワイトノイズ
正規ホワイトノイズはiidである

ランダムウォーク

iid系列（正規ホワイトノイズなど）の累積和。
独特の動きをするので、さまざまな場所で登場

ランダムウォーク系列と
正規ホワイトノイズ系列の違いは？
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ランダムウォーク過程の初歩

定常過程

性質が一定で、時間的に変化しないもの

非定常過程

性質が時間と共に変化するもの
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ランダムウォーク過程の初歩

定常過程の性質1

平均値や分散が一定である

トレンドなどが存在しない

定常過程の性質2

自己相関は時間差のみに依存

2000年代における1日差の相関関係

1950年代における1日差の相関関係
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定常過程：一定の範囲で安定している

非定常過程：増えるか減るか、不透明
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定常過程：一定の範囲で安定している

非定常過程：増えるか減るか、不透明

正規ホワイトノイズ

ランダムウォーク
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定常過程（正規ホワイトノイズ）：20系列をシミュレート

非定常過程（ランダムウォーク） ：20系列をシミュレート
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非定常過程の例：ランダムウォーク

1月 2月 3月 4月

3 2 4

正規ホワイトノイズの累積和は非定常

-12

5月

2 1 4 6 10

ホワイト
ノイズ

トレンドがあるように見えるトレンドがあるように見える
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ランダムウォーク過程の初歩

ランダムウォーク(RW)

誤差が累積するので、分散がどんどん増える
→非定常過程

正規ホワイトノイズ(WN)

分散は一定
→定常系列
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ランダムウォーク過程の初歩

ランダムウォーク系列と自己相関

iid系列（正規ホワイトノイズなど）の累積和
ランダムウォークは「1時点前の自分の値」を含む

1日目のRW

2日目のRW

3日目のRW

4日目のRW

＝ WN①

＝ WN① ＋ WN②

＝ WN① ＋ WN② ＋ WN③

＝ WN① ＋ WN② ＋ WN③ ＋ WN④

ランダムウォーク(RW)のシミュレーション
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ランダムウォーク過程の初歩

ランダムウォーク系列と自己相関

iid系列（正規ホワイトノイズなど）の累積和
ランダムウォークは「1時点前の自分の値」を含む

1日目のRW

2日目のRW

3日目のRW

4日目のRW

＝ WN①

＝ 1日目のRW ＋ WN②

＝ 2日目のRW ＋ WN③

＝ 3日目のRW ＋ WN④

ランダムウォーク(RW)のシミュレーション
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ランダムウォーク過程の初歩

ランダムウォーク系列と自己相関

iid系列（正規ホワイトノイズなど）の累積和
ランダムウォークは「1時点前の自分の値」を含む

同じ値を使う→似ている
→正の自己相関がある！
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正規ホワイトノイズ：自己相関0でばらつき小さい

ランダムウォーク：正の自己相関があり、ばらつき大きい
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ランダムウォーク過程の初歩

2つのホワイトノイズ(WN)系列の散布図

WN系列はばらつきが小さいので、
大体同じようなグラフになる

回帰分析を実行すると
傾きは大体0になる
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ランダムウォーク過程の初歩

2つのランダムウォーク(RW)系列の散布図

RW系列はばらつきが大きいので、
かなりグラフの形が変わる

マイナスの傾き？ プラスの傾き？
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ランダムウォーク過程の初歩

WN、RW系列への回帰分析

RW系列はばらつきが大きいので、
0から離れた傾きが出やすい



31

ランダムウォーク過程の初歩

2つのランダムウォーク(RW)系列への回帰分析

本来は何の関係もない2つのRW系列であっても、
傾きのばらつきが大きいので「たまたま大きな傾き」
等が出やすい
→本来なら何の関係もないのに
「傾きが0と有意に異なるかどうか」の検定をすると
有意差がでることが頻繁にある

RW系列に対しては、
通常の仮説検定や区間推定は使えない！



状態空間モデル(SSM)

32
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状態空間モデル(SSM)

1．状態空間モデルの概要

2．ローカルレベルモデル
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状態空間モデルとは

状態空間モデル

時系列データにも適用できる統計モデルの1種
目に見えない「状態」の存在を仮定しているのが特徴

State Space Models略してSSMと呼ぶこともある

なお、線形ガウス状態空間モデルは、動的線形モデル
Dynamic Linear Models略してDLMと呼ぶこともある
→今回のテーマはDLM
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状態空間モデルとは

状態

観測

目にすることのできない状態と
目に見える観測とに分けてモデル化する

状態空間モデルとは

2010年
1月

2010年
2月

2010年
3月

2010年
4月
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状態方程式

状態

観測

状態は過去の影響を受けている
状態方程式で過去と未来の関係を表現

状態方程式とは

2010年
1月

2010年
2月

2010年
3月

2010年
4月
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観測方程式

状態

観測

観測は現在の状態から得られる
観測方程式で観測値の得られ方を表現

観測方程式とは

2010年
1月

2010年
2月

2010年
3月

2010年
4月
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状態 観測

湖の中
釣獲尾数

購買力
商品の売り上げ

なぜ目に見えない状態の存在を
モデルに組み込むのだろうか？
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状態を仮定する意義

状態

観測

外因性 トレンド周期性 etc…

複雑な状態の変化を柔軟にモデリング
周期やトレンドの成分を個別に分解できる
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状態空間モデル(SSM)基礎

1．状態空間モデルの概要

2．ローカルレベルモデル
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ローカルレベルモデルとは

状態空間モデルの「型」の1つ。とてもシンプル

別名は
「ランダムウォーク＋ノイズ」モデル
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ローカルレベルモデルとは

状態はランダムウォーク的に変化(正規ホワイトノイズの累積和)

状態

2010年
1月

2010年
2月

2010年
3月

2010年
4月

N 0, 𝜎𝑤
2 の

正規ホワイトノイズ

N 0, 𝜎𝑤
2 の

正規ホワイトノイズ

N 0, 𝜎𝑤
2 の

正規ホワイトノイズ
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ローカルレベルモデルとは

状態

N 0, 𝜎𝑣
2 の

正規ホワイトノイズ
観測

状態にノイズが加わって観測が得られる

2010年
1月

2010年
2月

2010年
3月

2010年
4月
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用語の整理

ランダムウォーク

iid系列の累積和（非定常）
iid系列として正規ホワイトノイズを今回は仮定

過程誤差

状態が「次の時点の状態」に遷移する際のノイズのこと
過程誤差の大きさは、分散𝜎𝑤

2で表現
過程誤差が大きいと、状態が大きく変化しやすい

観測誤差

状態から観測が得られる際に加わるノイズのこと
観測誤差の大きさは、分散𝜎𝑣

2で表現
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ローカルレベルモデルの構造

状態方程式 𝜇𝑡 = 𝜇𝑡−1 + 𝑤𝑡 , 𝑤𝑡~N 0, 𝜎𝑤
2

今期の
  状態

前期の
  状態

過程誤差
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ローカルレベルモデルの構造

状態方程式 𝜇𝑡 = 𝜇𝑡−1 + 𝑤𝑡 , 𝑤𝑡~N 0, 𝜎𝑤
2

今期の
  観測

今期の
  状態

観測誤差

観測方程式 𝑦𝑡 = 𝜇𝑡 + 𝑣𝑡, 𝑣𝑡~N 0, 𝜎𝑣
2
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ローカルレベルモデルの構造

観測方程式

今期の
  状態

前期の
  状態

過程誤差

今期の
  観測

今期の
  状態

観測誤差

状態方程式



状態空間モデルの推定方法の概要
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内容

1．状態空間モデルを推定する流れ

2．カルマンフィルタ

3．平滑化

4．状態空間モデルにおける最尤法
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状態空間モデルの推定

状態空間モデルには複数の推定方法がある

線形ガウス状態空間モデルの推定
非線形非ガウス状態空間モデルの推定
→異なる手法となる

線形ガウス状態空間モデルの推定方法

カルマンフィルタと最尤法の組み合わせがおすすめ
→計算速度が速い！
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状態空間モデルを推定する流れ

Step1 カルマンフィルタによる状態推定

状態の推定のためには、パラメータが必要
過程誤差の分散（ 𝜎𝑤

2 ）
観測誤差の分散（ 𝜎𝑣

2 ）

Step1の段階では
暫定的なパラメータを使って状態を推定するしかない
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状態空間モデルを推定する流れ

Step1 カルマンフィルタによる状態推定

Step2 最尤法によるパラメータの推定

「暫定的なパラメータ」を使って状態を推定したのち、
試行錯誤的にパラメータを修正していくイメージ
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状態空間モデルを推定する流れ

Step1 カルマンフィルタによる状態推定

Step2 最尤法によるパラメータの推定

Step3 カルマンフィルタによる状態の再推定
平滑化による、状態推定

平滑化はカルマンフィルタと違って、
データ全部を余すことなく使って状態を推定する
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状態空間モデルを推定する流れ

Step1 カルマンフィルタによる状態推定

Step2 最尤法によるパラメータの推定

Step3 カルマンフィルタによる状態の再推定
平滑化による、状態推定

今回は先に状態の推定方法をまとめて説明
最後にパラメータ推定の方法を説明

パラメータ

状態

状態
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内容

1．状態空間モデルを推定する流れ

2．カルマンフィルタ

3．平滑化

4．状態空間モデルにおける最尤法

状態推定

パラメータ推定
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カルマンフィルタとは

カルマンフィルタ

「予測→フィルタリング」の繰り返し計算により
効率的に状態を推定する計算手法

まずは「予測」と「フィルタリング」の
イメージをつかんでもらいます
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カルマンフィルタの流れ：予測

前期の状態から今期の状態を予測
今期の状態から今期の観測を予測

状態

観測

2010年
1月

2010年
2月

2010年
3月

2010年
4月

この予測は
少し外れるはず
この予測は

少し外れるはず
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カルマンフィルタの流れ：フィルタリング

状態

観測

2010年
1月

2010年
2月

2010年
3月

2010年
4月

実

補正

今期の「実際に得られた実測値」を使い
予測された今期の状態を補正すること

フィルタリングとは
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カルマンフィルタの流れ：予測

状態

観測

2010年
1月

2010年
2月

2010年
3月

2010年
4月

実

補正

「補正された状態」に基づき
次回の予測を行う

カルマンフィルタの流れ
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用語の整理

フィルタリング

実測値に基づいて、状態を補正すること
「今期の実測値」を使って「今期の状態」を補正

フィルタ化推定量

フィルタリングによって補正された状態の値
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カルマンフィルタ

フィルタリングは「状態の補正」をするもの

どのように「補正」をするのが正しい？
→これから「補正」の方法論の説明に移ります
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カルマンフィルタ

案1：実測値と同じ値になるまで状態を補正

実測値を完全に信用
補正後は、観測と状態が等しくなる

案2：実測値は無視して状態を補正しない

実測値を完全に無視
観測による状態の補正が行われない

ちょうどよい塩梅で補正したい
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カルマンフィルタ

ナイル川の流量データ（観測値）
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カルマンフィルタ

案1：実測値と同じ値になるまで状態を補正
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カルマンフィルタ

案2：実測値は無視して状態を補正しない
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カルマンフィルタ

ちょうどいい塩梅
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カルマンゲイン

実測値－予測された観測

フィルタ化推定量（補正後の状態）
＝補正前の状態＋カルマンゲイン×予測残差

ゲインが1なら：実測値と同じ値になるまで状態を補正

ゲインが0なら：実測値は無視して状態を補正しない

※ カルマンゲインを推定する詳細は略
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カルマンフィルタの流れ

Step1：前期の情報から今期を予測する

Step2：フィルタリングして状態を補正

Step3：補正後の状態からさらに予測……
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内容

1．状態空間モデルを推定する流れ

2．カルマンフィルタ

3．平滑化

4．状態空間モデルにおける最尤法

状態推定

パラメータ推定
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フィルタリングの復習

状態

観測

2010年
1月

2010年
2月

2010年
3月

2010年
4月

実

補正

今期の「実際に得られた実測値」を使い
今期の「状態」を補正する

フィルタリングとは



71

平滑化

状態

観測

2010年
1月

2010年
2月

2010年
3月

2010年
4月

実 実 実 実

補正

全ての「実際に得られた実測値」を使い
古い時点の「状態」を補正する

平滑化とは
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平滑化の補足

最新時点においては（未来のデータがないので）、
フィルタ化推定量と平滑化状態は一致する

平滑化状態

平滑化を用いて推定された状態のこと

平滑化状態の方が「滑らか」になる
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平滑化状態

フィルタ化推定量
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内容

1．状態空間モデルを推定する流れ

2．カルマンフィルタ

3．平滑化

4．状態空間モデルにおける最尤法

状態推定

パラメータ推定
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カルマンフィルタにおける尤度

過程誤差の分散（ 𝜎𝑤
2 ）

観測誤差の分散（ 𝜎𝑣
2 ）

パラメータ：

ෑ N 0,観測値の予測誤差の分散尤度：

観測値の予測残差データ：

平均値が0
正規分布に従う

前期の状態の予測誤差の分散＋𝜎𝑤
2 ＋𝜎𝑣

2
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最尤法まとめ

Step1 暫定的なパラメータ（ 𝜎𝑤
2 , 𝜎𝑣

2 ）を指定して
カルマンフィルタを実行する

Step2 想定される「予測誤差の大きさ」と
実際の予測残差を比較する

尤度が増えるように、パラメータを微調整する

Step3 Step2を繰り返して、
最も尤度が高くなるパラメータを採用する



「慣れ」のモデル化
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お客様が、マーケティング施策に
慣れてしまうことを想定して分析を行おう！
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「慣れ」のモデル化

広告を配信したら、売り上げが増えたぞ！広告を配信したら、売り上げが増えたぞ！

お客様の行動が時間に応じて変化する場合は
時系列分析を行うのが良いよ
お客様の行動が時間に応じて変化する場合は
時系列分析を行うのが良いよ

でも、長く広告を続けていたら、
少しずつ効果が薄くなっていく……
でも、長く広告を続けていたら、
少しずつ効果が薄くなっていく……
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「慣れ」のモデル化

広告の効果は、長く続かないことも・・・・・・

広告配信期間
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「慣れ」のモデル化

「慣れ」をモデル化するための技術

時間に応じて、変化するパラメータを推定する

𝑦𝑖 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑏𝑒𝑡𝑎 ∙ 𝑥𝑖 + 𝜀𝑖

𝜀𝑖~Normal 0, 𝜎2

（通常の）線形回帰分析

𝑦𝑡 = 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑡 + 𝑏𝑒𝑡𝑎𝑡 ∙ 𝑥𝑡 + 𝜀𝑡

𝜀𝑡~Normal 0, 𝜎2

※ 𝑡はtimeを表す時間の添え字
切片も傾きも、時間によって変化する

時間によってパラメータが変化する線形回帰分析
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「慣れ」のモデル化

広告を出すと、売り上げは平均100万円UPだ！広告を出すと、売り上げは平均100万円UPだ！

広告フラグ＝０なら広告なし。１なら広告あり

売り上げ平均 = 切片 + 100 ×広告フラグ

広告を出しても、売り上げは40万円しか増えない！広告を出しても、売り上げは40万円しか増えない！

売り上げ平均 = 切片 + 40 ×広告フラグ

1か月後……
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「慣れ」のモデル化

広告を配信するのに60万円かかります広告を配信するのに60万円かかります

状態空間モデルを使って
「慣れ」をモデル化しよう
状態空間モデルを使って
「慣れ」をモデル化しよう

広告効果が60万円以下になるなら、
広告は出したくないな
広告効果が60万円以下になるなら、
広告は出したくないな
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内容

1．時変係数モデルの理論

2．時変係数モデルの推定
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ローカルレベルモデルの構造（復習）

今期の
  状態

前期の
  状態

過程誤差

今期の
  観測

今期の
  状態

観測誤差
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外因性を組み込む

観測誤差広告効果

CMなどの広告のフラグ
0：広告なし／1：広告あり

今期の
  状態

前期の
  状態

過程誤差

今期の
  観測

今期の
  状態
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時変係数モデル

広告の効果は、長く続かないことも・・・・・・

広告配信期間
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時変係数モデル

広告を出すと売り上げが●万円増える

広告の効果を表すパラメータが、
ランダムウォークに従って変化するとみなす

最初は「広告があると100万円UP」だったのが
1月後には、「40万円UP」まで下がっている、等
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時変係数モデル

今期の
  状態

今期の
  水準

広告フラグ
今期の
  係数

水準（レベル）成分
広告がなかった時の、
売り上げ水準を表す成分

外生変数（広告フラグ）の係数

状態を2つの成分に分ける
水準成分 と 外生変数の影響
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時変係数モデル

水準成分も外生変数の係数も
ともに時間によって変化する

今期の
  状態

今期の
  水準

広告フラグ
今期の
  係数

ランダムウォーク的変動 ランダムウォーク的変動
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参考：回帰分析との比較

売り上げ 切片 広告フラグ係数

切片や、回帰係数がランダムウォーク的に
変化することを想定した時変係数モデル

今期の
  状態

今期の
  水準

広告フラグ
今期の
  係数

普通の線形回帰モデル

時変係数モデルの状態

ランダムウォーク的変動 ランダムウォーク的変動
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参考：ローカルレベルモデルとの比較

ローカルレベルモデルは、
水準成分のみを持つモデルであるといえる

今期の
  状態

前期の
  水準

過程誤差

今期の
  観測

今期の
  状態

観測誤差
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用語：水準と係数／確定的と確率的

確定的水準

通常の線形回帰モデルの「切片」のように、
時間によって変化しない水準成分

確率的水準

ローカルレベルモデルのように、
時間によって確率的に変化する水準

確定的係数

通常の線形回帰モデルの「回帰係数」

確率的係数（時変係数）

時間によって確率的に変化する係数
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時変係数モデル

今期の
  水準

前期の
  水準

過程誤差①

今期の
  観測

今期の
  水準

観測誤差

広告フラグ

0：広告なし／1：広告あり

今期の
  係数

前期の
  係数

過程誤差②

今期の
  係数
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時変係数モデル

状態方程式 𝜇𝑡 = 𝜇𝑡−1 + 𝑤𝑡 , 𝑤𝑡~N 0, 𝜎𝑤
2

観測方程式 𝑦𝑡 = 𝛼𝑡 + 𝑣𝑡, 𝑣𝑡~N 0, 𝜎𝑣
2

𝛽𝑡 = 𝛽𝑡−1 + 𝜏𝑡 ,  𝜏𝑡~N 0, 𝜎𝜏
2

𝑒𝑥𝑡:時点𝑡での外生変数
𝛽𝑡：時点𝑡での回帰係数

𝛼𝑡 = 𝜇𝑡 + 𝛽𝑡 ∙ 𝑒𝑥𝑡
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内容

1．時変係数モデルの理論

2．時変係数モデルの推定
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Rを用いた実演
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